If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2+16x-20=-36
We move all terms to the left:
-4x^2+16x-20-(-36)=0
We add all the numbers together, and all the variables
-4x^2+16x+16=0
a = -4; b = 16; c = +16;
Δ = b2-4ac
Δ = 162-4·(-4)·16
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16\sqrt{2}}{2*-4}=\frac{-16-16\sqrt{2}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16\sqrt{2}}{2*-4}=\frac{-16+16\sqrt{2}}{-8} $
| 25^x(1/5)^5*x=25 | | 4n2–13n=0 | | -12.5=5n | | 3-(x-2)=4x-10 | | 3x/4=2x+1 | | Y=-10x2+4 | | -n/12=-50 | | 2x^+13x-24=0 | | X=(y+5)/(2y-3) | | Y=-10x2+3 | | w=0.0026(85)(1500)√4/4.5 | | (X+3)^2+(y-7)^2=9 | | 2q−4=2 | | 3x=8/7 | | -1/3y-6=-11= | | 9x+6=14+8x | | 6x-5(3x-1)=58 | | 3x-11=-2x+3/2 | | -7/6n+28=21 | | 0=1/7x+4 | | 0=-(1/2)*x^2+4*x-6 | | -(1/2)*x^2+4x-6=0 | | 6=2/3x+2 | | 1/2(4x+8)=3/4(12x-16) | | 4x²-4=0 | | 2x=6/3 | | 4x²-5x=0 | | 4x²-5x=0 | | 4z/7-8=6 | | 9-5(2x+10)=-+ | | 3c-9=18 | | (x+48)+2x=90 |